If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+6x-20=0
a = 20; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·20·(-20)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{409}}{2*20}=\frac{-6-2\sqrt{409}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{409}}{2*20}=\frac{-6+2\sqrt{409}}{40} $
| 3x-5x=6777 | | 1/x-4=5/x | | 7(x-5)=3(x-4) | | 6(x+2)=3x+14 | | 8x-38=4x-36 | | 8=12+g | | n/5 +0.6=2 | | k-69=71 | | 11w=45 | | 2x-6/7+4x+4/3-5/7x=5-X/21 | | 7c+3c=55 | | 8a+24=4a-12= | | x+44=120 | | 2x+3(x•0,7)=1025 | | 5x-12-3x=5x-15 | | -3/5=9t | | 3x-29=2x+6 | | 3p=60p | | 324^x=1 | | (X+1)^2=x^2+16 | | 2,7^x=8 | | (X+1)*(2x-1)=2x^2+1 | | 1+t+5t=43 | | 7x+14=4x+19 | | 8(6-5y)=29 | | 4(4g-2)=(3g+1) | | 5x+26=3x+19 | | x/4+6=23 | | 5(3n-7)=-32 | | -25=4(5c-7) | | 5b-7-3b=-16 | | 8x+3=12x+3x |